Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38082686

ABSTRACT

Many common chronic diseases operate at the intersection of metabolic and cardiovascular dysfunction. In order to model the effects of these diseases and investigate underlying causes we are developing a cardiomyocyte model which incorporates both the mechanics and metabolic factors that underlie work done by the heart. In this paper we present the first experimental results from our study measuring mechanical properties in human cardiac trabeculae, including the effect of inorganic phosphate (Pi) on the complex modulus at 37 °C. Extending our previous mathematical model, we have developed a computationally efficient model of cardiac cross-bridge mechanics which is sensitive to changes in cellular Pi. This extended model was parameterised with human cardiac complex modulus data. It captured the changes to cardiac mechanics following an increase in Pi concentration that we measured experimentally, including a reduced elastic modulus and a right-shift in frequency. The human cardiac trabecula we studied had a low sensitivity to Pi compared to what has been previously reported in mammalian cardiac tissue, which suggests that the muscle may have cellular compensatory mechanisms to cope with elevated Pi levels. This study demonstrates the feasibility of our experimental-modelling pipeline for future investigation of mechanical and metabolic effects in the diseased human heart.Clinical Relevance- This study presents the first measurement of the effect of Pi on the stiffness frequency response of human cardiac tissue and extends an experimental-modelling framework appropriate for investigating effects of disease on the human heart.


Subject(s)
Myocytes, Cardiac , Phosphates , Humans , Elastic Modulus , Myocardium , Myocytes, Cardiac/drug effects , Phosphates/pharmacology , Models, Cardiovascular
2.
Life (Basel) ; 13(2)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36836897

ABSTRACT

Pulmonary artery hypertension causes right ventricular hypertrophy which rapidly progresses to heart failure with underlying cardiac mitochondrial dysfunction. Prior to failure, there are alterations in cytosolic Ca2+ handling that might impact mitochondrial function in the compensatory phase of RV hypertrophy. Our aims, therefore, were (i) to measure beat-to-beat mitochondrial Ca2+ fluxes, and (ii) to determine mitochondrial abundance and function in non-failing, hypertrophic cardiomyocytes. Male Wistar rats were injected with either saline (CON) or monocrotaline (MCT) to induce pulmonary artery hypertension and RV hypertrophy after four weeks. Cytosolic Ca2+ ([Ca2+]cyto) transients were obtained in isolated right ventricular (RV) cardiomyocytes, and mitochondrial Ca2+ ([Ca2+]mito) was recorded in separate RV cardiomyocytes. The distribution and abundance of key proteins was determined using confocal and stimulated emission depletion (STED) microscopy. The RV mitochondrial function was also assessed in RV homogenates using oxygraphy. The MCT cardiomyocytes had increased area, larger [Ca2+]cyto transients, increased Ca2+ store content, and faster trans-sarcolemmal Ca2+ extrusion relative to CON. The MCT cardiomyocytes also had larger [Ca2+]mito transients. STED images detected increased mitochondrial protein abundance (TOM20 clusters per µm2) in MCT, yet no difference was found when comparing mitochondrial respiration and membrane potential between the groups. We suggest that the larger [Ca2+]mito transients compensate to match ATP supply to the increased energy demands of hypertrophic cardiomyocytes.

3.
Physiol Rep ; 11(3): e15599, 2023 02.
Article in English | MEDLINE | ID: mdl-36750180

ABSTRACT

The aim of this study was to investigate cardiomyocyte Ca2+ handling and contractile function in freshly excised human atrial tissue from diabetic and non-diabetic patients undergoing routine surgery. Multicellular trabeculae (283 ± 20 µm in diameter) were dissected from the endocardial surface of freshly obtained right atrial appendage samples from consenting surgical patients. Trabeculae were mounted in a force transducer at optimal length, electrically stimulated to contract, and loaded with fura-2/AM for intracellular Ca2+ measurements. The response to stimulation frequencies encompassing the physiological range was recorded at 37°C. Myofilament Ca2+ sensitivity was assessed from phase plots and high potassium contractures of force against [Ca2+ ]i . Trabeculae from diabetic patients (n = 12) had increased diastolic (resting) [Ca2+ ]i (p = 0.03) and reduced Ca2+ transient amplitude (p = 0.04) when compared to non-diabetic patients (n = 11), with no difference in the Ca2+ transient time course. Diastolic stress was increased (p = 0.008) in trabeculae from diabetic patients, and peak developed stress decreased (p ≤ 0.001), which were not accounted for by reduction in the cardiomyocyte, or contractile protein, content of trabeculae. Trabeculae from diabetic patients also displayed diminished myofilament Ca2+ sensitivity (p = 0.018) compared to non-diabetic patients. Our data provides evidence of impaired calcium handling during excitation-contraction coupling with resulting contractile dysfunction in atrial tissue from patients with type 2 diabetes in comparison to the non-diabetic. This highlights the importance of targeting cardiomyocyte Ca2+ homeostasis in developing more effective treatment options for diabetic heart disease in the future.


Subject(s)
Atrial Fibrillation , Diabetes Mellitus, Type 2 , Humans , Calcium/metabolism , Diabetes Mellitus, Type 2/metabolism , Atrial Fibrillation/metabolism , Myocardial Contraction/physiology , Heart Atria/metabolism , Calcium, Dietary/metabolism , Sarcoplasmic Reticulum/metabolism
4.
Curr Res Physiol ; 6: 100098, 2023.
Article in English | MEDLINE | ID: mdl-36814643

ABSTRACT

Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether PFs and specifically TRPM4 channels, play a role in these mechanically-induced arrhythmias. Pseudo-ECGs and left ventricular (LV) activation, measured by optical mapping, were recorded in isolated, Langendorff-perfused, rat hearts. The LV endocardial surface was irrigated with experimental agents, via an indwelling catheter. The number and period of ectopic activations was measured during LV lumen inflation via an indwelling fluid-filled balloon (100 µL added over 2 s, maintained for 38 s). Mechanically-induced arrhythmias occurred during balloon inflation: they were multifocal, maximal in the first 5 s and ceased within 20 s. Optical mapping revealed activation patterns indicating PF-mediated and ectopic focal sources. Irrigation of the LV lumen with Lugol solution (IK/I2) for 10s reduced ectopics by 93% (n = 16, P < 0.001); with ablation of endocardial PFs confirmed by histology. Five min irrigation of the LV lumen with 50 µM 9-Phenanthrol, a blocker of TRPM4 channels, reduced ectopics by 39% (n = 15, P < 0.01). Immunohistochemistry confirmed that TRPM4 was more abundant in PFs than myocardium. Our results show that the endocardial surface plays an important role in these mechanically-induced ectopic activations. Ectopic activation patterns indicate a participation of PFs in these arrhythmias, with a potential involvement of TRPM4 channels, shown by the reduction of arrhythmias by 9-Phenanthrol.

5.
Front Physiol ; 14: 1323605, 2023.
Article in English | MEDLINE | ID: mdl-38292450

ABSTRACT

Multi-scale models of cardiac energetics are becoming crucial in better understanding the prevalent chronic diseases operating at the intersection of metabolic and cardiovascular dysfunction. Computationally efficient models of cardiac cross-bridge kinetics that are sensitive to changes in metabolite concentrations are necessary to simulate the effects of disease-induced changes in cellular metabolic state on cardiac mechanics across disparate spatial scales. While these models do currently exist, deeper analysis of how the modelling of metabolite effects and the assignment of strain dependence within the cross-bridge cycle affect the properties of the model is required. In this study, model linearisation techniques were used to simulate and interrogate the complex modulus of an ODE-based model of cross-bridge kinetics. Active complex moduli were measured from permeabilised rat cardiac trabeculae under five different metabolite conditions with varying ATP and Pi concentrations. Sensitivity to metabolites was incorporated into an existing three-state cross-bridge model using either a direct dependence or a rapid equilibrium approach. Combining the two metabolite binding methods with all possible locations of strain dependence within the cross-bridge cycle produced 64 permutations of the cross-bridge model. Using linear model analysis, these models were systematically explored to determine the effects of metabolite binding and their interaction with strain dependence on the frequency response of cardiac muscle. The results showed that the experimentally observed effects of ATP and Pi concentrations on the cardiac complex modulus could be attributed to their regulation of cross-bridge detachment rates. Analysis of the cross-bridge models revealed a mechanistic basis for the biochemical schemes which place Pi release following cross-bridge formation and ATP binding prior to cross-bridge detachment. In addition, placing strain dependence on the reverse rate of the cross-bridge power stroke produced the model which most closely matched the experimental data. From these analyses, a well-justified metabolite-sensitive model of rat cardiac cross-bridge kinetics is presented which is suitable for parameterisation with other data sets and integration with multi-scale cardiac models.

6.
Math Biosci ; 353: 108922, 2022 11.
Article in English | MEDLINE | ID: mdl-36270519

ABSTRACT

The properties underlying cardiac cross-bridge kinetics can be characterised by a muscle's active complex modulus. While the complex modulus can be described by a series of linear transfer functions, the biophysical mechanisms underlying these components are represented inconsistently among existing cross-bridge models. To address this, we examined the properties commonly implemented in cross-bridge models using model linearisation techniques and assessed their contributions to the complex modulus. From this analysis, we developed a biophysical model of cross-bridge kinetics that captures the three components of the active complex modulus: (1) the elastic modulus at low frequencies that arises from allowing the proportion of cross-bridges in the post-power stroke state to increase with sarcomere length, (2) the increase in elastic modulus at high frequencies that arises from the dependence of cross-bridge strain on sarcomere velocity, and (3) the negative viscous modulus which signifies the production of work by cross-bridges arises from either a sarcomere length or strain dependence, or both, on the rate of change of cross-bridge proportion in the post-power stroke state. While a model that includes all these features can theoretically reproduce the cardiac complex modulus, analysis of their transfer functions reveals that the relative contributions of these components are often not taken into account. As a result, the negative viscous component that signifies work production is not visible because the complex modulus is dominated by the effects of sarcomere velocity on cross-bridge strain.


Subject(s)
Heart , Sarcomeres , Viscosity , Kinetics , Muscle Contraction
7.
J Mol Endocrinol ; 66(4): 285-297, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33739935

ABSTRACT

The melanocortin-4 receptor (MC4R), a critical G-protein-coupled receptor (GPCR) regulating energy homeostasis, activates multiple signalling pathways, including mobilisation of intracellular calcium ([Ca2+]i). However, very little is known about the physiological significance of MC4R-induced [Ca2+]i since few studies measure MC4R-induced [Ca2+]i. High-throughput, read-out assays for [Ca2+]i have proven unreliable for overexpressed GPCRs like MC4R, which exhibit low sensitivity mobilising [Ca2+]i. Therefore, we developed, optimised, and validated a robust quantitative high-throughput assay using Fura-2 ratio-metric calcium dye and HEK293 cells stably transfected with MC4R. The quantitation enables direct comparisons between assays and even between different research laboratories. Assay conditions were optimised step-by-step to eliminate interference from stretch-activated receptor increases in [Ca2+]i and to maximise ligand-activated MC4R-induced [Ca2+]i. Calcium imaging was performed using a PheraStar FS multi-well plate reader. Probenecid, included in the buffers to prevent extrusion of Fura-2 dye from cells, was found to interfere with the EGTA-chelation of calcium, required to determine Rmin for quantitation of [Ca2+]i. Therefore, we developed a method to determine Rmin in specific wells without probenecid, which was run in parallel with each assay. The validation of the assay was shown by reproducible α-melanocyte-stimulating hormone (α-MSH) concentration-dependent activation of the stably expressed human MC4R (hMC4R) and mouse MC4R (mMC4R), inducing increases in [Ca2+]i, for three independent experiments. This robust, reproducible, high-throughput assay that quantitatively measures MC4R-induced mobilisation of [Ca2+]i in vitro has potential to advance the development of therapeutic drugs and understanding of MC4R signalling associated with human obesity.


Subject(s)
Calcium/isolation & purification , High-Throughput Screening Assays , Receptor, Melanocortin, Type 4/genetics , Amino Acid Sequence/genetics , Calcium/metabolism , Calcium Signaling/genetics , Cyclic AMP/metabolism , Energy Metabolism/genetics , HEK293 Cells , Homeostasis/genetics , Humans , Protein Binding/genetics , Signal Transduction/genetics
8.
Front Physiol ; 12: 808798, 2021.
Article in English | MEDLINE | ID: mdl-35140632

ABSTRACT

BACKGROUND: Cardiomyocyte contraction requires a constant supply of ATP, which varies depending on work rate. Maintaining ATP supply is particularly important during excitation-contraction coupling, where cytosolic Ca2+ fluxes drive repeated cycles of contraction and relaxation. Ca2+ is one of the key regulators of ATP production, and its uptake into the mitochondrial matrix occurs via the mitochondrial calcium uniporter. Fluorescent indicators are commonly used for detecting cytosolic Ca2+ changes. However, visualizing mitochondrial Ca2+ fluxes using similar methods is more difficult, as the fluorophore must be permeable to both the sarcolemma and the inner mitochondrial membrane. Our aim was therefore to optimize a method using the fluorescent Ca2+ indicator Rhod-2 to visualize beat-to-beat mitochondrial calcium fluxes in rat cardiomyocytes. METHODS: Healthy, adult male Wistar rat hearts were isolated and enzymatically digested to yield rod-shaped, quiescent ventricular cardiomyocytes. The fluorescent Ca2+ indicator Rhod-2 was reduced to di-hydroRhod-2 and confocal microscopy was used to validate mitochondrial compartmentalization. Cardiomyocytes were subjected to various pharmacological interventions, including caffeine and ß-adrenergic stimulation. Upon confirmation of mitochondrial Rhod-2 localization, loaded myocytes were then super-fused with 1.5 mM Ca2+ Tyrodes containing 1 µM isoproterenol and 150 µM spermine. Myocytes were externally stimulated at 0.1, 0.5 and 1 Hz and whole cell recordings of both cytosolic ([Ca2+]cyto) and mitochondrial calcium ([Ca2+] mito ) transients were made. RESULTS: Myocytes loaded with di-hydroRhod-2 revealed a distinct mitochondrial pattern when visualized by confocal microscopy. Application of 20 mM caffeine revealed no change in fluorescence, confirming no sarcoplasmic reticulum compartmentalization. Myocytes loaded with di-hydroRhod-2 also showed a large increase in fluorescence within the mitochondria in response to ß-adrenergic stimulation (P < 0.05). Beat-to-beat mitochondrial Ca2+ transients were smaller in amplitude and had a slower time to peak and maximum rate of rise relative to cytosolic calcium transients at all stimulation frequencies (P < 0.001). CONCLUSION: Myocytes loaded with di-hydroRhod-2 revealed mitochondrial specific compartmentalization. Mitochondrial Ca2+ transients recorded from di-hydroRhod-2 loaded myocytes were distinct in comparison to the large and rapid Rhod-2 cytosolic transients, indicating different kinetics between [Ca2+]cyto and [Ca2+]mito transients. Overall, our results showed that di-hydroRhod-2 loading is a quick and suitable method for measuring beat-to-beat [Ca2+]mito transients in intact myocytes.

9.
Acta Physiol (Oxf) ; 231(2): e13545, 2021 02.
Article in English | MEDLINE | ID: mdl-32757472

ABSTRACT

AIM: Altered organization of the transverse-tubular network is an early pathological event occurring even prior to the onset of heart failure. Such t-tubular remodelling disturbs the synchrony and signalling between membranous and intracellular ion channels, exchangers, receptors and ATPases essential in the dynamics of excitation-contraction coupling, leading to ionic abnormality and mechanical dysfunction in heart disease progression. In this study, we investigated whether a disrupted t-tubular network has a direct effect on cardiac mechano-energetics. Our aim was to understand the fundamental link between t-tubular remodelling and impaired energy metabolism, both of which are characteristics of heart failure. We thus studied healthy tissue preparations in which cellular processes are not altered by any disease event. METHODS: We exploited the "formamide-detubulation" technique to acutely disrupt the t-tubular network in rat left-ventricular trabeculae. We assessed the energy utilization by cellular Ca2+ cycling and by crossbridge cycling, and quantified the change of energy efficiency following detubulation. For these measurements, trabeculae were mounted in a microcalorimeter where force and heat output were simultaneously measured. RESULTS: Following structural disorganization from detubulation, muscle heat output associated with Ca2+ cycling was reduced, indicating impaired intracellular Ca2+ homeostasis. This led to reduced force production and heat output by crossbridge cycling. The reduction in force-length work was not paralleled by proportionate reduction in the heat output and, as such, energy efficiency was reduced. CONCLUSIONS: These results reveal the direct energetic consequences of disrupted t-tubular network, linking the energy disturbance and the t-tubular remodelling typically observed in heart failure.


Subject(s)
Conservation of Energy Resources , Heart Failure , Animals , Heart , Heart Ventricles , Myocardial Contraction , Myocytes, Cardiac , Rats
10.
Front Physiol ; 11: 193, 2020.
Article in English | MEDLINE | ID: mdl-32210837

ABSTRACT

Ventricular muscle has a biphasic response to stretch. There is an immediate increase in force that coincides with the stretch which is followed by a second phase that takes several minutes for force to develop to a new steady state. The initial increase in force is due to changes in myofilament properties, whereas the second, slower component of the stretch response (known as the "slow force response" or SFR) is accompanied by a steady increase in Ca2+ transient amplitude. Evidence shows stretch-dependent Ca2+ influx during the SFR occurs through some mechanism that is continuously active for several minutes following stretch. Many of the candidate ion channels are located primarily in the t-tubules, which are consequently lost in heart disease. Our aim, therefore, was to investigate the impact of t-tubule loss on the SFR in non-failing cardiac trabeculae in which expression of the different Ca2+ handling proteins was not altered by any disease process. For comparison, we also investigated the effect of formamide detubulation of trabeculae on ß-adrenergic activation (1 µM isoproterenol), since this is another key regulator of cardiac force. Measurement of intracellular calcium ([Ca2+]i) and isometric stress were made in RV trabeculae from rat hearts before, during and after formamide treatment (1.5 M for 5 min), which on washout seals the surface sarcolemmal t-tubule openings. Results showed detubulation slowed the time course of Ca2+ transients and twitch force, with time-to-peak, maximum rate-of-rise, and relaxation prolonged in trabeculae at optimal length (Lo). Formamide treatment also prevented development of the SFR following a step change in length from 90 to 100% Lo, and blunted the response to ß-adrenergic activation (1 µM isoproterenol).

11.
Biophys Rev ; 12(1): 135-142, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31939110

ABSTRACT

The mechanical response of the heart to myocardial stretch has been understood since the work of muscle physiologists more than 100 years ago, whereby an increase in ventricular chamber filling during diastole increases the subsequent force of contraction. The stretch-induced increase in contraction is biphasic. There is an abrupt increase in the force that coincides with the stretch (the rapid response), which is then followed by a slower response that develops over several minutes (the slow force response, or SFR). The SFR is associated with a progressive increase in the magnitude of the Ca2+ transient, the event that initiates myocyte cross-bridge cycling and force development. However, the mechanisms underlying the stretch-dependent increase in the Ca2+ transient are still debated. This review outlines recent literature on the SFR and summarizes the different stretch-activated Ca2+ entry pathways. The SFR might result from a combination of several different cellular mechanisms initiated in response to activation of different cellular stretch sensors.

12.
Curr Res Physiol ; 2: 1-11, 2020 Jun.
Article in English | MEDLINE | ID: mdl-34746811

ABSTRACT

BACKGROUND: Prostaglandin F2α (PGF2α) has a positively inotropic effect on right ventricular (RV) trabeculae from healthy adult rat hearts, and may therefore be therapeutically useful as a non-catecholaminergic inotrope. These provide additional contractile support for the heart without the added energetic demand of increased heart rate, and are also suitable for patients with reduced ß adrenergic receptor (ß-AR) responsiveness, or impaired mitochondrial energy supply. However, the response of hypertrophied rat hearts to PGF2α has not previously been examined. Our aim was therefore to determine the effect of PGF2α on isolated perfused rat hearts with RV hypertrophy following induction of pulmonary artery hypertension. METHODS: Male Wistar rats (300 g) were injected with either 60 mg kg-1 of monocrotaline (MCT, n = 10) or sterile saline as control (CON, n = 11). Four weeks post injection; hearts were isolated and Langendorff-perfused in sinus rhythm. Measurement of left ventricular (LV) pressure and the electrocardiogram were made and the response to 0.3 µM PGF2α was determined. RESULTS: PGF2α increased LV developed pressure in CON and in 60% MCT hearts, with no change in heart rate. However, 40% of MCT hearts developed arrhythmias during the peak inotropic response. For comparison, the response to 0.03 µM isoproterenol (ISO) was also investigated. Peak LV pressure developed sooner in response to ISO compared to PGF2α in both rat groups, although the inotropic response to ISO was reduced in MCT hearts. Analysis of fixed ventricular tissue confirmed that only RV myocytes were hypertrophied in MCT hearts. Our study showed that PGF2α was positively inotropic for healthy hearts, but found it generated arrhythmias in 40% of MCT hearts at the dose investigated. However, a more physiological dose of PGF2α may be a useful alternative without the added energetic cost of catecholaminergic inotropes.

13.
PLoS One ; 14(4): e0214740, 2019.
Article in English | MEDLINE | ID: mdl-30964911

ABSTRACT

Pulmonary hypertension (PH) increases the work of the right ventricle (RV) and causes right-sided heart failure. This study examined RV mitochondrial function and ADP transfer in PH animals advancing to right heart failure, and investigated a potential therapy with the specific ß1-adrenergic-blocker metoprolol. Adult Wistar rats (317 ± 4 g) were injected either with monocrotaline (MCT, 60 mg kg-1) to induce PH, or with an equivalent volume of saline for controls (CON). At three weeks post-injection the MCT rats began oral metoprolol (10 mg kg-1 day-1-) or placebo treatment until heart failure was observed in the MCT group. Mitochondrial function was then measured using high-resolution respirometry from permeabilised RV fibres. Relative to controls, MCT animals had impaired mitochondrial function but maintained coupling between myofibrillar ATPases and mitochondria, despite an increase in ADP diffusion distances. Cardiomyocytes from the RV of MCT rats were enlarged, primarily due to an increase in myofibrillar protein. The ratio of mitochondria per myofilament area was decreased in both MCT groups (p ≤ 0.05) in comparison to control (CON: 1.03 ± 0.04; MCT: 0.74 ± 0.04; MCT + BB: 0.74 ± 0.03). This not only implicates impaired energy production in PH, but also increases the diffusion distance for metabolites within the MCT cardiomyocytes, adding an additional hindrance to energy supply. Together, these changes may limit energy supply in MCT rat hearts, particularly at high cardiac workloads. Metoprolol treatment did not delay the onset of heart failure symptoms, improve mitochondrial function, or regress RV hypertrophy.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/pharmacology , Metoprolol/pharmacology , Mitochondria/drug effects , Ventricular Function, Right/drug effects , Adenosine Triphosphatases/metabolism , Administration, Oral , Adrenergic beta-1 Receptor Antagonists/therapeutic use , Animals , Disease Models, Animal , Energy Metabolism/drug effects , Heart Failure/diagnosis , Heart Failure/prevention & control , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/drug therapy , Male , Metoprolol/therapeutic use , Mitochondria/metabolism , Monocrotaline/toxicity , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myofibrils/metabolism , Myofibrils/pathology , Oxidative Phosphorylation/drug effects , Placebo Effect , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
14.
Acta Physiol (Oxf) ; 226(1): e13250, 2019 05.
Article in English | MEDLINE | ID: mdl-30614655

ABSTRACT

When exposed to an abrupt stretch, cardiac muscle exhibits biphasic active force enhancement. The initial, instantaneous, force enhancement is well explained by the Frank-Starling mechanism. However, the cellular mechanisms associated with the second, slower phase remain contentious. This review explores hypotheses regarding this "slow force response" with the intention of clarifying some apparent contradictions in the literature. The review is partitioned into three sections. The first section considers pathways that modify the intracellular calcium handling to address the role of the sarcoplasmic reticulum in the mechanism underlying the slow force response. The second section focuses on extracellular calcium fluxes and explores the identity and contribution of the stretch-activated, non-specific, cation channels as well as signalling cascades associated with G-protein coupled receptors. The final section introduces promising candidates for the mechanosensor(s) responsible for detecting the stretch perturbation.


Subject(s)
Myocardial Contraction/physiology , Myocardium/metabolism , Stress, Mechanical , Animals
15.
Cilia ; 7: 4, 2018.
Article in English | MEDLINE | ID: mdl-30079247

ABSTRACT

BACKGROUND: A transient increase in cytosolic Ca2+ (the "Ca2+ transient") determines the degree and duration of myocyte force development in the heart. However, we have previously observed that, under the same experimental conditions, the Ca2+ transients from isolated cardiac myocytes are reduced in amplitude in comparison to those from multicellular cardiac preparations. We therefore questioned whether the enzymatic cell isolation procedure might remove structures that modulate intracellular Ca2+ in some way. Primary cilia are found in a diverse range of cell types, and have an abundance of Ca2+-permeable membrane channels that result in Ca2+ influx when activated. Although primary cilia are reportedly ubiquitous, their presence and function in the heart remain controversial. If present, we hypothesized they might provide an additional Ca2+ entry pathway in multicellular cardiac tissue that was lost during cell isolation. The aim of our study was to look for evidence of primary cilia in isolated myocytes and ventricular tissue from rat hearts. METHODS: Immunohistochemical techniques were used to identify primary cilia-specific proteins in isolated myocytes from adult rat hearts, and in tissue sections from embryonic, neonatal, young, and adult rat hearts. Either mouse anti-acetylated α-tubulin or rabbit polyclonal ARL13B antibodies were used, counterstained with Hoechst dye. Selected sections were also labelled with markers for other cell types found in the heart and for myocyte F-actin. RESULTS: No evidence of primary cilia was found in either tissue sections or isolated myocytes from adult rat ventricles. However, primary cilia were present in tissue sections from embryonic, neonatal (P2) and young (P21 and P28) rat hearts. CONCLUSION: The lack of primary cilia in adult rat hearts rules out their contribution to myocyte Ca2+ homoeostasis by providing a Ca2+ entry pathway. However, evidence of primary cilia in tissue from embryonic and very young rat hearts suggests they have a role during development.

16.
Pflugers Arch ; 470(7): 1115-1126, 2018 07.
Article in English | MEDLINE | ID: mdl-29525825

ABSTRACT

Currently, there are no tailored therapies available for the treatment of right ventricular (RV) hypertrophy, and the cellular mechanisms that underlie the disease are poorly understood. We investigated the cellular changes that occur early in the progression of the disease, when RV hypertrophy is evident, but prior to the onset of heart failure. Intracellular Ca2+ ([Ca2+]i) handling was examined in a rat model of monocrotaline (MCT)-induced pulmonary hypertension and subsequent RV hypertrophy. [Ca2+]i and stress production were measured in isolated RV trabeculae under baseline conditions (1-Hz stimulation, 1.5 mM [Ca2+]o, 37 °C), and in response to inotropic interventions (5-Hz stimulation or 1-µM isoproterenol). Under baseline conditions, MCT trabeculae had impaired Ca2+ release in response to stimulation with a 45% delay in the time-to-peak Ca2+, but there was no difference in the amplitude and decay of the Ca2+ transient, or active stress relative to RV trabeculae from normotensive hearts (CON). Increasing stimulation frequency from 1 to 5 Hz increased stress in CON, but not MCT trabeculae. Similarly, ß-adrenergic stimulation with isoproterenol increased Ca2+ transient amplitude and active stress in CON, but not in MCT trabeculae, despite accelerating Ca2+ transient decay in trabeculae from both groups. During isoproterenol treatment, MCT trabeculae showed increased diastolic Ca2+ leak, which may explain the blunted inotropic response to ß-adrenergic stimulation. Confocal imaging of trabeculae fixed following functional measurements showed that myocytes were on average wider, and transverse-tubule organisation was disrupted in MCT which provides a mechanism to explain the observed slower release of Ca2+.


Subject(s)
Calcium/metabolism , Heart Failure/metabolism , Hypertrophy, Right Ventricular/metabolism , Myocardial Contraction/physiology , Animals , Heart Ventricles/drug effects , Heart Ventricles/metabolism , Hypertension, Pulmonary/metabolism , Isoproterenol/pharmacology , Male , Monocrotaline/pharmacology , Myocardial Contraction/drug effects , Rats , Rats, Wistar , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
17.
J Physiol ; 595(14): 4725-4733, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28455843

ABSTRACT

KEY POINTS: The heat of activation of cardiac muscle reflects the metabolic cost of restoring ionic homeostasis following a contraction. The accuracy of its measurement depends critically on the abolition of crossbridge cycling. We abolished crossbridge activity in isolated rat ventricular trabeculae by use of blebbistatin, an agent that selectively inhibits myosin II ATPase. We found cardiac activation heat to be muscle length independent and to account for 15-20% of total heat production at body temperature. We conclude that it can be accurately estimated at minimal muscle length. ABSTRACT: Activation heat arises from two sources during the contraction of striated muscle. It reflects the metabolic expenditure associated with Ca2+ pumping by the sarcoplasmic reticular Ca2+ -ATPase and Ca2+ translocation by the Na+ /Ca2+ exchanger coupled to the Na+ ,K+ -ATPase. In cardiac preparations, investigators are constrained in estimating its magnitude by reducing muscle length to the point where macroscopic twitch force vanishes. But this experimental protocol has been criticised since, at zero force, the observed heat may be contaminated by residual crossbridge cycling activity. To eliminate this concern, the putative thermal contribution from crossbridge cycling activity must be abolished, at least at minimal muscle length. We achieved this using blebbistatin, a selective inhibitor of myosin II ATPase. Using a microcalorimeter, we measured the force production and heat output, as functions of muscle length, of isolated rat trabeculae from both ventricles contracting isometrically at 5 Hz and at 37°C. In the presence of blebbistatin (15 µmol l-1 ), active force was zero but heat output remained constant, at all muscle lengths. Activation heat measured in the presence of blebbistatin was not different from that estimated from the intercept of the heat-stress relation in its absence. We thus reached two conclusions. First, activation heat is independent of muscle length. Second, residual crossbridge heat is negligible at zero active force; hence, the intercept of the cardiac heat-force relation provides an estimate of activation heat uncontaminated by crossbridge cycling. Both results resolve long-standing disputes in the literature.


Subject(s)
Heart/physiology , Hot Temperature , Myocardium , Animals , Heterocyclic Compounds, 4 or More Rings/pharmacology , Male , Myocardial Contraction/drug effects , Rats, Wistar
18.
Am J Physiol Heart Circ Physiol ; 310(11): H1649-57, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27084386

ABSTRACT

Systemic hypertension initially promotes a compensatory cardiac hypertrophy, yet it progresses to heart failure (HF), and energetic deficits appear to be central to this failure. However, the transfer of energy between the mitochondria and the myofibrils is not often considered as part of the energetic equation. We compared hearts from old spontaneously hypertensive rats (SHRs) and normotensive Wistar controls. SHR hearts showed a 35% depression in mitochondrial function, yet produced at least double the amount of reactive oxygen species (ROS) in all respiration states in left ventricular (LV) homogenates. To test the connectivity between mitochondria and myofibrils, respiration was further tested in situ with LV permeabilized fibers by addition of multiple substrates and ATP, which requires hydrolysis to mediate oxidative phosphorylation. By trapping ADP using a pyruvate kinase enzyme system, we tested ADP channeling towards mitochondria, and this suppressed respiration and elevated ROS production more in the SHR fibers. The ADP-trapped state was also less relieved on creatine addition, likely reflecting the 30% depression in total CK activity in the SHR heart fibers. Confocal imaging identified a 34% longer distance between the centers of myofibril to mitochondria in the SHR hearts, which increases transverse metabolite diffusion distances (e.g., for ATP, ADP, and creatine phosphate). We propose that impaired connectivity between mitochondria and myofibrils may contribute to elevated ROS production. Impaired energy exchange could be the result of ultrastructural changes that occur with hypertrophy in this model of hypertension.


Subject(s)
Hypertension/metabolism , Mitochondria, Heart/metabolism , Myocardium/metabolism , Reactive Oxygen Species/metabolism , Animals , Creatine/metabolism , Oxidative Phosphorylation , Oxygen Consumption/physiology , Rats , Rats, Inbred SHR , Rats, Wistar
19.
J Cardiovasc Pharmacol ; 68(1): 81-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27015081

ABSTRACT

Prostaglandins are ubiquitous signaling molecules in the body that produce autocrine/paracrine effects on target cells in response to mechanical or chemical signals. In the heart, long-term exposure to prostaglandin (PG) F2α has been linked to the development of hypertrophy; however, there is no consensus on the acute effect of PGF2α. Our aim was to determine the response to exogenous PGF2α in isolated trabeculae from rat hearts. PGF2α (1 µM) increased both the Ca transients and the isometric stress in trabeculae, reaching steady state after 10-15 minutes, without altering the time course of Ca transient decay. The precursor of PGF2α, arachidonic acid, also stimulated a similar response. The positive inotropic effect of PGF2α was mediated through a protein kinase C signaling pathway that involved activation of the sarcolemmal Na/H exchanger. We also found that the slow force response to stretch was attenuated in the presence of PGF2α and by addition of indomethacin, a blocker of prostaglandin synthesis. In conclusion, PGF2α was positively inotropic when acutely applied to trabeculae and contributed to the increased Ca transients during the slow force response to stretch. Together, these data suggest that PGF2α is important in maintaining homeostasis during volume loading in healthy hearts.


Subject(s)
Cardiotonic Agents/pharmacology , Dinoprost/pharmacology , Heart Ventricles/drug effects , Myocardial Contraction/drug effects , Ventricular Function, Right/drug effects , Animals , Arachidonic Acid/pharmacology , Calcium Signaling/drug effects , Cyclooxygenase Inhibitors/pharmacology , Guanidines/pharmacology , Heart Ventricles/metabolism , In Vitro Techniques , Indomethacin/pharmacology , Protein Kinase C/metabolism , Rats, Wistar , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Sodium-Hydrogen Exchangers/metabolism , Sulfones/pharmacology , Time Factors
20.
Clin Exp Pharmacol Physiol ; 43(1): 88-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26466753

ABSTRACT

Recently, a family of guanine nucleotide exchange factors have been identified in many cell types as important effectors of cyclic adenosine 3',5'-monophospahte (cAMP) signalling that is independent of protein kinase A (PKA). In the heart, investigation of exchange protein directly activated by cAMP (Epac) has yielded conflicting results. Since cAMP is an important regulator of cardiac contractility, this study aimed to examine whether Epac activation modulates excitation-contraction coupling in ventricular preparations from rat hearts. The study used 8-(4-chlorophenylthio)-2'-O-methyladenosine-3', 5'-cyclic monophosphate (cpTOME), an analogue of cAMP that activates Epac, but not PKA. In isolated myocytes, cpTOME increased Ca(2+) spark frequency from about 7 to 32/100 µm(3)/s (n = 10), P = 0.05 with a reduction in the peak amplitude of the sparks. Simultaneous measurements of intracellular Ca(2+) and isometric force in multicellular trabeculae (n = 7, 1.5 mmol/L [Ca(2+)]o) revealed no effect of Epac activation on either the amplitude of Ca(2+) transients (Control 0.7 ± 0.1 vs cpTOME 0.7 ± 0.1; 340/380 fura-2 ratio, P = 0.35) or on peak stress (Control 24 ± 5 mN/mm(2) vs cpTOME 23 ± 5 mN/mm(2), P = 0.20). However, an effect of Epac in trabeculae was unmasked by lowering extracellular [Ca(2+)]o. In these depotentiated trabeculae, activation of the Epac pathway increased myofilament Ca(2+) sensitivity, an effect that was blocked by addition of KN-93, a Ca(2+)/calmodulin-dependent protein kinase II (CaMK-II) inhibitor. This study suggests that Epac activation may be a useful therapeutic target to increase the strength of contraction during low inotropic states.


Subject(s)
Calcium/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Long-Term Synaptic Depression , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Myofibrils/metabolism , Animals , Excitation Contraction Coupling , Heart Ventricles/cytology , Heart Ventricles/metabolism , Myocytes, Cardiac/physiology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...